Sortierung Titel Year

Publikationen


Peer Reviewed Scientific Journals | 2021

A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds

Kuba M, Skoglund N, Öhman M, Hofbauer H. A review on bed material particle layer formation and its positive influence on the performance of thermo-chemical biomass conversion in fluidized beds.Fuel.2021.291:120214. https://doi.org/10.1016/j.fuel.2021.120214

External Link

Details

Bed material particle layer formation plays a significant role in thermo-chemical conversion of biomass. The interaction between biomass ash and bed material in fluidized bed conversion processes has been described for a variety of different applications and spans from fundamental research of formation mechanisms to effects of this layer formation on long-term operation in industrial-scale. This review describes the current state of the research regarding the mechanisms underlying layer formation and the positive influence of bed material particle layer formation on the operation of thermo-chemical conversion processes. Thus, the main focus lies on its effect on the catalytic activity towards gasification reactions and the impact on oxygen transport in chemical looping combustion. The review focuses on the most commonly investigated bed materials, such as quartz, feldspar or olivine. While the most relevant results for both the underlying mechanisms and the subsequently observed effects on the operation are presented and discussed, knowledge gaps where further research is necessary are identified and described.


Peer Reviewed Scientific Journals | 2021

Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed

Mansoor M, Stadler M, Auer H, Zellinger M. Advanced Optimal Planning for Microgrid Technologies including Hydrogen and Mobility at a real Microgrid Testbed. International Journal of Hydrogen Energy.2021.

External Link

Details

This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).


Other publication | 2021

Algae4Fish - Video

External Link

Details


Peer Reviewed Scientific Journals | 2021

An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems

Unterberger V, Lichtenegger K, Kaisermayer V, Gölles M, Horn M. An adaptive short-term forecasting method for the energy yield of flat-plate solar collector systems. Applied Energy. 2021 Apr 16;2021(293). https://doi.org/10.1016/j.apenergy.2021.116891

External Link

Details

The number of large-scale solar thermal installations has increased rapidly in Europe in recent years, with 70 % of these systems operating with flat-plate solar collectors. Since these systems cannot be easily switched on and off but directly depend on the solar radiation, they have to be combined with other technologies or integrated in large energy systems. In order to most efficiently integrate and operate solar systems, it is of great importance to consider their expected energy yield to better schedule heat production, storage and distribution. To do so the availability of accurate forecasting methods for the future solar energy yield are essential. Currently available forecasting methods do not meet three important practical requirements: simple implementation, automatic adaption to seasonal changes and wide applicability. For these reasons, a simple and adaptive forecasting method is presented in this paper, which allows to accurately forecast the solar heat production of flat-plate collector systems considering weather forecasts. The method is based on a modified collector efficiency model where the parameters are continuously redetermined to specifically consider the influence of the time of the day. In order to show the wide applicability the method is extensively tested with measurement data of various flat-plate collector systems covering different applications (below 200 Celsius), sizes and orientations. The results show that the method can forecast the solar yield very accurately with a Mean Absolute Range Normalized Error (MARNE) of about 5 % using real weather forecasts as inputs and outperforms common forecasting methods by being nearly twice as accurate.


Peer Reviewed Scientific Journals | 2021

Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas

Pongratz G, Subotić V, Schroettner H, Hochenauer C, Skrzypkiewicz M, Kupecki J, Anca-Couce A, Scharler R. Analysis of H2S-related short-term degradation and regeneration of anode- and electrolyte supported solid oxide fuel cells fueled with biomass steam gasifier product gas. Energy.2021.218:119556.

External Link

Details

Using solid oxide fuel cells in biomass gasification based combined heat and power production is a promising option to increase electrical efficiency of the system. For an economically viable design of gas cleaning units, fuel cell modules and further development of suitable degradation detection methods, information about the behavior of commercially available cell designs during short-term poisoning with H2S can be crucial. This work presents short-term degradation and regeneration analyses of industrial-relevant cell designs with different anode structure and sulfur tolerance fueled with synthetic product gas from wood steam gasification containing 1 to 10 ppmv of H2S at 750°C and 800°C. Full performance regeneration of both cell types was achieved in all operating points. The high H2O content and avoided fuel depletion may have contributed to a lower performance degradation and better regeneration of the cells. A strong influence of the catalytically active anode volume on poisoning and regeneration behavior was quantified, thereby outlining the importance of considering the anode structure besides the sulfur tolerance of the anode material. Hence, cells with less sulfur tolerant anode material but larger anode volume might outperform cells less sensitive to sulfur in the case of an early detection of a gas cleaning malfunction.


Peer Reviewed Scientific Journals | 2021

Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus

Hedayati A, Sefidari H, Boman C, Skoglund N, Kienzl N, Öhman M. Ash transformation during single-pellet gasification of agricultural biomass with focus on potassium and phosphorus. Fuel Processing Technology. 15 June 2021.217:106805

External Link

Details

Agricultural biomasses and residues can play an important role in the global bioenergy system but their potential is limited by the risk of several ash-related problems such as deposit formation, slagging, and particle emissions during their thermal conversion. Therefore, a thorough understanding of the ash transformation reactions is required for this type of fuels. The present work investigates ash transformation reactions and the release of critical ash-forming elements with a special focus on K and P during the single-pellet gasification of different types of agricultural biomass fuels, namely, poplar, grass, and wheat grain residues. Each fuel was gasified as a single pellet at three different temperatures (600, 800, and 950 °C) in a Macro-TGA reactor. The residues from different stages of fuel conversion were collected to study the gradual ash transformation. Characterization of the residual char and ash was performed employing SEM-EDS, XRD, and ICP with the support of thermodynamic equilibrium calculations (TECs). The results showed that the K and P present in the fuels were primarily found in the residual char and ash in all cases for all studied fuels. While the main part of the K release occurred during the char conversion stage, the main part of the P release occurred during the devolatilization stage. The highest releases – less than 18% of P and 35% of K – were observed at the highest studied temperature for all fuels. These elements were present in the residual ashes as K2Ca(CO3)2 and Ca5(PO4)3OH for poplar; K-Ca-rich silicates and phosphosilicates in mainly amorphous ash for grass; and an amorphous phase rich in K-Mg-phosphates for wheat grain residues.


Peer Reviewed Scientific Journals | 2021

Bioenergy technologies, uses, market and future trends with Austria as a case study

Anca-Couce A, Hochenauer C, Scharler R. Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews.2021;135:110237.

External Link

Details

The current bioenergy uses and conversion technologies as well as future trends for the production of heat, power, fuels and chemicals from biomass are reviewed. The focus is placed in Austria, which is selected due to its high bioenergy utilization, providing 18.4% of the gross energy final consumption in 2017, and its strong industrial and scientific position in the field. The most common bioenergy application in Austria is bioheat with 170 PJ in 2017 mainly obtained from woody biomass combustion, followed by biofuels with 21 PJ and bioelectricity with 17 PJ. Bioheat has a stable market, where Austrian manufacturers of boilers and stoves have a strong position exporting most of their production. Future developments in bioheat production should go in the line of further reducing emissions, increasing feedstock flexibility and coupling with other renewables. For bioelectricity and biofuels, the current framework does not promote the growth of the current main technologies, i.e. combined heat and power (CHP) based on biomass combustion or biogas and first generation biofuels. However, an increase in all bioenergy uses is required to achieve the Austrian plan to be climate neutral in 2040. The current initiatives and future possibilities to achieve this increase are presented and discussed, e.g. mandatory substitution of old oil boilers, production of biomethane and early commercialization of CHP with a high efficiency or demonstration of advanced biofuels production based on gasification.


Peer Reviewed Scientific Journals | 2021

Categorization of small-scale biomass combustion appliances by characteristic numbers

Feldmeier S, Schwarz M, Wopienka E, Pfeifer C. Categorization of small-scale biomass combustion appliances by characteristic numbers. Renewable Energy. 2021.163:2128-2136.

External Link

Details

The market offers a broad range of different combustion appliances dedicated to residential heating with biomass. The effect of fuel properties on the formation of slag and emissions varies and the technology influences the impact to a certain extent. The applicability of biomass fuels is not only determined by operational settings but also by the design of boiler components as grate area and combustion chamber. Aspects as the fuel load on the grate, residence time, geometry of grate and combustion chamber design, as well as feeding and de-ashing influence the extent of slag formation and emission release. The determination of characteristic numbers by means of constructional measures allows a systematic comparison and - in a further step - an assessment/categorization of combustion technologies. After conducting a boiler survey relevant parameters regarding grate, combustion chamber, feeding, and ash removal were gathered. Characteristic numbers were specified in order to compare technological aspects. The results of this study allow the investigation of the influence of the combustion technology on the performance. They will assist the systematic and targeted design of small-scale boilers and the optimization of combustion appliances in future, especially when it comes to fuel-flexibility.


Peer Reviewed Scientific Journals | 2021

Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor

Katsaros G, Sommersacher P, Retschitzegger S, Kienzl N, Tassou SA, Pandey DS. Combustion of poultry litter and mixture of poultry litter with woodchips in a fixed bed lab-scale batch reactor. Fuel. 2021.286.119310.

External Link

Details

Experiments have been conducted in a batch fixed bed lab-scale reactor to investigate the combustion behaviour of three different biomass fuels, poultry litter (PL), blend of PL with wood chips (PL/WC) and softwood pellets (SP). Analysis of the data gathered after completion of the test runs, provided useful insights about the thermal decomposition behaviour of the fuels, the formation of N gaseous species, the release of ash forming elements and the estimation of aerosol emissions. It was observed that the N gaseous species are mainly produced during the devolatilisation phase. Hydrogen cyanide (HCN) was the predominant compound in the case of SP combustion, whereas ammonia (NH3) displayed the highest concentration during the combustion of PL and blend (PL/WC). With reference to ash forming elements, the release rates of potassium (K) and sodium (Na) range between 15–50% and 20–37% respectively, whereas the release rate of sulphur (S) falls between 54–92%. Chlorine (Cl) presents very high release rate for all tested fuels acquiring values greater than 85%, showing the volatile nature of the specific compound. The maximum potential of aerosol emissions was estimated based on the calculation of ash forming elements. In particular, during PL combustion the maximum aerosol emissions were observed, 2806 mg/Nm3 (dry flue gas, 13 vol% O2), mainly influenced by the release rate of K in the gas phase. Fuel indexes for the pre-evaluation of combustion related challenges such as NOx emissions, potential for aerosols formation, corrosion risk, and ash melting behaviour have also been investigated.


Technical Reports | 2021

Control of DHC networks and Reduction of the operating temperatures in DH systems

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Muschick D, Unterberger V, Leoni P, Schmidt R, Lennermo G. "Control of DHC networks and Reduction of the operating temperatures in DH systems". EA SHC FACTSHEET 55.A-D4.2. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on different approaches for the control of the heat distribution networks in case of the integration of large-scale solar thermal systems, and different possibilities for the reduction of the operating temperatures in DH systems.


Technical Reports | 2021

Control of large-scale solar thermal plants

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Unterberger V. "Control of large-scale solar thermal plants". IEA SHC FACTSHEET 55.B-D3.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on the control of large-scale thermal plants, limited to plants feeding into DH networks as well as theirkey components, i.e. the actual collector circuit and the heat exchanger between primary and secondary circuit.


Peer Reviewed Scientific Journals | 2021

Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects

Bauer L, Ranglová K, Masojidek J, Drosg B, Meixner K. Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. Applied Sciences. 2021.11(3):1056

External Link

Details

The interest in microalgae products has been increasing, and therefore the cultivation industry is growing steadily. To reduce the environmental impact and production costs arising from nutrients, research needs to find alternatives to the currently used artificial nutrients. Microalgae cultivation in anaerobic effluents (more specifically, digestate) represents a promising strategy for increasing sustainability and obtaining valuable products. However, digestate must be processed prior to its use as nutrient source. Depending on its composition, different methods are suitable for removing solids (e.g., centrifugation) and adjusting nutrient concentrations and ratios (e.g., dilution, ammonia stripping). Moreover, the resulting cultivation medium must be light-permeable. Various studies show that growth rates comparable to those in artificial media can be achieved when proper digestate treatment is used. The necessary steps for obtaining a suitable cultivation medium also depend on the microalgae species to be cultivated. Concerning the application of the biomass, legal aspects and impurities originating from digestate must be considered. Furthermore, microalgae species and their application fields are essential criteria when selecting downstream processing methods (harvest, disintegration, dehydration, product purification). Microalgae grown on digestate can be used to produce various products (e.g., bioenergy, animal feed, bioplastics, and biofertilizers). This review gives insight into the origin and composition of digestate, processing options to meet requirements for microalgae cultivation and challenges regarding downstream processing and products.


Peer Reviewed Scientific Journals | 2021

Drivers and barriers in retrofitting pulp and paper industry with bioenergy for more efficient production of liquid, solid and gaseous biofuels: A review.

Mäki E, Saastamoinen H, Melin K, Matschegg D, Pihkola H. Drivers and barriers in retrofitting pulp and paper industry with bioenergy for more efficient production of liquid, solid and gaseous biofuels: A review. Biomass and Bioenergy. 2021.106036. https://doi.org/10.1016/j.biombioe.2021.106036

External Link

Details

Ample interest for more efficient utilization of bio-based residues has emerged in the Nordic pulp and paper (P&P) industry, which uses virgin wood as feedstock. Although different bioenergy retrofit technologies for production of liquid, solid, and gaseous bioenergy products have been applied in the existing P&P mills, the number of installations remains small. The lack of profound knowledge of existing bioenergy retrofits hinders the replication and market uptake of potential technologies. This review synthesises the existing knowledge of European installations and identifies the key drivers and barriers for implementation to foster the market uptake of potential technologies. The bioenergy retrofits were reviewed in terms of technical maturity, drivers, barriers and market potential. Based on this evaluation, common drivers and barriers towards wider market uptake were outlined from political, economic, social, technical, environmental, and legal perspective. Technologies already commercially applied include anaerobic fermentation of sludge, bark gasification, tall oil diesel and bioethanol production, whereas lignin extraction, biomethanol production, hydrothermal liquefaction and hydrothermal carbonization are being demonstrated or first applications are under construction. The findings of this review show that a stable flow of residues at P&P mills creates a solid base for retrofitting. New innovative bio-based products would allow widening the companies' product portfolios and creating new businesses. Also, European Union's (EU) legislation drives towards advanced biofuels production. Wider uptake of the retrofitting technologies requires overcoming the barriers related to uncertainty of economic feasibility and unestablished markets for new products rather than technical immaturity. 


Peer Reviewed Scientific Journals | 2021

Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification

Fürsatz K, Fuchs J, Benedikt F, Kuba M, Hofbauer H. Effect of biomass fuel ash and bed material on the product gas composition in DFB steam gasification. Energy. 2021.219:119650.

External Link

Details

Gasification is a thermochemical process that transforms carbonaceous matter into a gaseous secondary energy carrier, referred to as product gas. This product gas can be used for heat and power generation but also for syntheses. One possible gasification technology suitable for further synthesis is dual fluidised bed (DFB) steam gasification. The H2:CO ratio, which determines the suitability of the product gas for further synthesis, is influenced by the catalytic activity inside the gasification reactor. Eleven DFB steam gasification experiments were performed comparing the catalytic activity for various bed material and fuel combinations. The bed materials used were K-feldspar, fresh and layered olivine, and limestone, and the fuels gasified were softwood, chicken manure, a bark–chicken manure mixture and a bark-straw-chicken manure mixture. The water-gas-shift (WGS) equilibrium deviation was used to evaluate the catalytic activity inside the gasification reactor. It was shown that both the fuel ash and bed material have an effect on the catalytic activity during gasification. Scanning electron microscopy and energy dispersive X-ray spectrometry showed the initial layer formation for experiments with ash-rich fuels. Isolated WGS experiments were performed to further highlight the influence of bed material, fuel ash and fuel ash layers on the WGS equilibrium.


Peer Reviewed Scientific Journals | 2021

Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler

Archan G, Anca-Couce A, Buchmayr M, Hochenauer C, Gruber J, Scharler R. Experimental evaluation of primary measures for NOX and dust emission reduction in a novel 200 kW multi-fuel biomass boiler. June 2021.170:1186-1196. https://doi.org/10.1016/j.renene.2021.02.055

External Link

Details

The aim of this work is to utilize various biogenic fuels without ash slagging and to significantly reduce NOX and particulate matter emissions in comparison to modern combustion technologies. For this purpose, a novel small-scale multi-fuel biomass grate furnace technology was developed and experimentally investigated. It employs a low oxygen concentration in the fixed-bed and a double air staging, including the supply of flue gas recirculation. In this way slagging is prevented on the grate, reducing the release of ash-forming volatiles, NOX emissions are minimized in the reduction zone and an efficient flue gas burnout is achieved in the tertiary zone. Wood pellets and chips as well as miscanthus briquettes were investigated.

The measured total particle emissions showed a reduction of 68% for pellets and 70% for wood chips compared to typical small-scale furnaces. Furthermore, a reduction of NOX emissions of 39% for wood chips, 40% for wood pellets and 45% for miscanthus briquettes was achieved compared to typical small-scale furnaces. The experimental parameter study provided fundamental insights into the various mechanisms involved in this novel technology, which is close to market introduction, and proved its high fuel flexibility and great potential for particulate matter and NOX emission reduction.


Other publication | 2021

Gemeinsam richtig heizen - Video

External Link

Details


Other publication | 2021

HPC - Workshop

Experimentelle Analyse, Simulation und Regelung von Absorptionswärmepumpen/-kältemaschinen

Zlabinger S, Unterberger V, Gölles M, Wernhart M, Rieberer R, Poier H, Rohinger C, Kemmerzehl C, Halmdienst C. Experimentelle Analyse, Simulation und Regelung von Absorptionswärmepumpen/-kältemaschinen. Online-Workshop im Rahmen des FFG-Projekts HPC ("4. Ausschreibung Energieforschung 2017") am 09.04.2021.

Download PDF

Details

Durch die vermehrte Einbindung von Absorptionswärmepumpen und -kältemaschinen in bestehende und zukünftige Energiesysteme des Kälte- und Wärmesektors kann der Anteil erneuerbarer Energien deutlich gesteigert werden. Um dies erfolgreich umsetzen zu können, müssen die Betriebsstrategien und Regelungen dieser Systeme jedoch in der Lage sein, auch mit dynamischen und stark variierenden Betriebsbedingungen umgehen zu können. Dieser Herausforderung hat sich das von der FFG geförderte Projekt HPC – heat pumping system control gewidmet. Im Rahmen dieses Workshops sollen die Ergebnisse und deren Nutzen für die Praxis präsentiert und diskutiert werden.


Peer Reviewed Scientific Journals | 2021

Integration of market aspects into material development: approach and exemplification for a wood composite

Fuhrmann M, Schwarzbauer P, Hesser F. Integration of market aspects into material development: approach and exemplification for a wood composite. European Journal of Wood and Wood Products. 2021. https://doi.org/10.1007/s00107-021-01697-z

External Link

Details

Due to a variety of applications and complex requirements in specific fields of use, the number of different materials is increasing. Thereof, the majority fails at the stage of market introduction, because the focus of material development is mostly on technical aspects, while market aspects are often neglected. One possible way of market introduction is material substitution. Thereby, requirements a material needs to meet are well known. However, a certain market focus on material development would be helpful regarding the final goal of the customer satisfaction. Therefore, this study presents an approach, which aims at guiding the technical material development and thus starts one stage earlier than most other studies, which focus on market introduction. A multi-stage approach helps integrating market aspects into material development, using the following methods: (1) method of Ashby to compare materials from a technical point of view and identify theoretically substitutable material groups and potential applications, (2) market data research and comparison for the identification of attractive markets, (3) method of Kano to classify material requirements and prioritize the optimization of material properties to satisfy the customers in selected markets. This approach is showcased and discussed using the example of an innovative wood composite under development, where it represented an aiding tool for guiding the further material development. An adaptation to any other material is possible at each of the three stages, although there are some limitations, which have to be considered, for example the selection of technical properties for the material comparison.


Peer Reviewed Scientific Journals | 2021

Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers.

Niederwieser H, Zemann C, Goelles M, Reichhartinger M. Model-Based Estimation of the Flue Gas Mass Flow in Biomass Boilers. IEEE Transactions on Control Systems Technology. 2021 Jul;19(4):1609 - 1622. https://doi.org/10.1109/TCST.2020.3016404

External Link

Details

Three estimators for the estimation of the flue gas mass flow in biomass boilers are presented and compared, namely a sliding-mode observer, a Kalman filter, and a so-called steady-state estimator. The flue gas mass flow is an important process variable in biomass boilers as it contains information about the supplied mass flows of air and decomposed fuel. It is also related to the generated heat flow. Furthermore, its knowledge may be exploited in model-based control strategies which allow one to keep pollutant emissions low, on the one hand, and to achieve high efficiency, on the other hand. However, due to fouling of the equipment over time, measurements and existing estimation methods are not suitable for long-term applications. The estimators proposed in this article are based on a dynamic model for gas tube heat exchangers. They are capable of handling the fouling of the heat exchanger and, additionally, they offer the possibility of monitoring the degree of fouling. By incorporating an additional differential pressure measurement and extending the aforementioned estimators, an improvement regarding the dynamic response and the estimation accuracy is achieved. The application of the estimators to real measurement data from both, a medium-scale and a small-scale biomass boiler, demonstrates their wide applicability.


Peer Reviewed Scientific Journals | 2021

Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions

Mansoor M, Stadler M, Zellinger M, Lichtenegger K, Auer H, Cosic A. Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions. Energy. 2021:215;119095.

External Link

Details

The optimal design of microgrids with thermal energy system requires optimization techniques that can provide investment and scheduling of the technology portfolio involved. In the modeling of such systems with seasonal storage capability, the two main challenges include the low temporal resolution of available data and the non-linear cost versus capacity relationship of solar thermal and heat storage technologies. This work overcomes these challenges by developing two different optimization models based on mixed-integer linear programming with objectives to minimize the total energy costs and carbon dioxide emissions. Piecewise affine functions are used to approximate the non-linear cost versus capacity behavior. The developed methods are applied to the optimal planning of a case study in Austria. The results of the models are compared based on the accuracy and real-time performance together with the impact of piecewise affine cost functions versus non-piecewise affine fixed cost functions. The results show that the investment decisions of both models are in good agreement with each other while the computational time for the 8760-h based model is significantly greater than the model having three representative periods. The models with piecewise affine cost functions show larger capacities of technologies than non-piecewise affine fixed cost function based models.


Peer Reviewed Scientific Journals | 2021

Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants

Larsson A, Kuba M, Berdugo Vilches T, Seemann M, Hofbauer H, Thunman H. Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Processing Technology. 2021.212:106609.

External Link

Details

Steam gasification enables the thermochemical conversion of solid fuels into a medium calorific gas that can be utilized for the synthesis of advanced biofuels, chemicals or for heat and power production. Dual fluidized bed (DFB) gasification is at present the technology applied to realize gasification of biomass in steam environment at large scale. Few large-scale DFB gasifiers exist, and this work presents a compilation and analysis of the data and operational strategies from the six DFB gasifiers in Europe. It is shown that the technology is robust, as similar gas quality can be achieved despite the differences in reactor design and operation strategies. Reference concentrations of both gas components and tar components are provided, and correlations in the data are investigated. In all plants, adjusting the availability and accessibility to the active ash components (K and Ca) was the key to control the gas quality. The gas quality, and in particular the tar content of the gas, can conveniently be assessed by monitored the concentration of CH4 in the produced gas. The data and experience acquired from these plants provide important knowledge for the future development of the steam gasification of biomass.


Technical Reports | 2021

Supervisory control of large-scale solar thermal systems

Task 55 Towards the Integration of Large SHC Systems into DHC Networks

Gölles M, Unterberger V, Kaisermayer V, Nigitz T, Muschick D. "Supervisory control of large-scale solar thermal systems". IEA SHC FACTSHEET 55.A-D4.1. Date of Publication: 28.01.2021. https://task55.iea-shc.org/fact-sheets

External Link

Details

Overview on different approaches for supervisory control strategies,deciding on operating modes and set points for the controls of the different plants and componentsintegrated in solar thermal systems.


Technical Reports | 2021

Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications

Maziarka P, Sommersacher P, Wang X, Kienzl N, Retschitzegger S, Prins W, Hedin N, Ronsse F. Tailoring of the pore structures of wood pyrolysis chars for potential use in energy storage applications. Applied Energy.2021.286:116431. https://doi.org/10.1016/j.apenergy.2020.116431

External Link

Details

Char obtained from biomass pyrolysis is an eco-friendly porous carbon, which has potential use as a material for electrodes in supercapacitors. For that application, a high microporous specific surface area (SSA) is desired, as it relates to the accessible surface for an applied electrolyte. Currently, the incomplete understanding of the relation between porosity development and production parameters hinders the production of tailor-made, bio-based pyrochars for use as electrodes. Additionally, there is a problem with the low reliability in assessing textual properties for bio-based pyrochars by gas adsorption. To address the aforementioned problems, beech wood cylinders of two different lengths, with and without pre-treatment with citric acid were pyrolysed at temperatures of 300–900 °C and analysed by gas adsorption. The pyrolyzed chars were characterised with adsorption with N2 and CO2 to assess the influence of production parameters on the textual properties. The new approach in processing the gas adsorption data used in this study demonstrated the required consistency in assessing the micro- and mesoporosity. The SSA of the chars rose monotonically in the investigated range of pyrolysis temperatures. The pre-treatment with citric acid led to an enhanced SSA, and the length of the cylinders correlated with a reduced SSA. With pyrolysis at 900 °C, the micro-SSAs of samples with 10 mm increased by on average 717 ± 32 m2/g. The trends among the investigated parameters and the textual properties were rationalized and provide a sound basis for further studies of tailor-made bio-based pyrochars as electrode materials in supercapacitors.


Peer Reviewed Scientific Journals | 2021

Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept

Logemann M, Wolf P, Loipersböck J, Schrade A, Wessling M, Haumann M. Ultra-low temperature water-gas shift reaction catalyzed by homogeneous Ru-complexes in a membrane reactor - membrane development and proof of concept. Catalysis Science and Technology. 2021.11(4):1558-1570. https://doi.org/10.1039/D0CY02111C

External Link

Details

A monolithic membrane reactor combining the supported ionic liquid-phase (SILP) catalyzed ultra-low temperature water–gas shift reaction (WGSR) with in situ product removal is presented. The SILP catalyst consists of the transition metal complex [Ru(CO)3Cl2]2 homogeneously dissolved in 1-butyl-2,3-dimethylimidazolium chloride [C4C1C1Im]Cl and supported on alumina pellets. These Ru-SILP pellets are deposited inside the channels of a silicon carbide monolith. The resulting monolithic catalyst is very active and stable in the WGSR in the temperature range between 120 and 160 °C, thereby making full use of the high equilibrium conversion at these conditions. A facilitated transport membrane was coated onto the smooth outside of the SiC monolith to allow preferential removal of CO2 compared to H2. The proof of this concept has been shown under industrially relevant conditions using a biogas feed. These results demonstrate, for the first time, the combination of homogeneous SILP catalyzed WGSR with enhanced in situ removal of one of the products (here: CO2) via facilitated transport membrane separation.


Conference contributions | 2020

"Long-term verification of a new modular method for CO-lambda-optimisation"

Zemann C, Hammer F, Gölles M. Long-term verification of a new modular method for CO-lambda-optimisation. 6th Central European Biomass Conference CEBC 2020 (Oral Presentation). 2020.

Details